

Larc Lessons Learned Workshop

25 Years of JPL Experience Refining a Mature Lessons Learned Process

David Oberhettinger
Office of the Chief Engineer
Jet Propulsion Laboratory, California Institute of
Technology
August 23, 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

What Does Mature Process Look Like?

Office of the Chief Engineer

Process attributes

- Lessons important to the institution are identified, ranked
- Lessons are credible: range of technical viewpoints are reflected
- Lessons are readable: format, quality writing, photos
- Lessons are verified as accurate to avoid "blowback"
- Important lessons are documented and approved
- Lessons are disseminated internally; projects assess compliance
- Lessons are shared with NASA?
- Lessons are infused to ensure a closed-loop process
- Process also engages the institutional Corrective Action System
- Process is well documented
- Process maturity undergoes continuous improvement

Prerequisites

- Organizational commitment to lessons learning
- Culture of openness: ability to admit and discuss mistakes

Lessons Learned Process History

- 1978: Spaceflight Significant Event File published by Walter K. Victor
 - SSEF maintained as 3-ring binder; SSEF last published in 1987
 - 1979: SSEF suspended
 - 1984: SSEF reactivated by Dr. Allen, JPL Director
- 1984: JPL Lessons Learned Committee (LLC) chartered
 - Oct 1984: LLC meetings chaired by Kermit Watkins, Flight Project Office
- 1985-1994: Developed several JPL on-line systems
 - GPVAX, ITIMS, and EDMS; Lessons Learned Channel terminated 1999
- 1992: NASA Lessons Learned Steering Group formed
 - NASA Centers started contributing lessons learned in 1992
- 1994: Rollout of NASA on-line database
 - Combined Automated Lessons Learned (CALL) maintained by GSFC
 - 1996: Current LLIS developed
- **2010**: *Infusion* cross-references vetted by JPL Engineering Board

Generating Lessons Learned

- Formal JPL lessons learned requirements = currently fairly minimal
- Impact of Lessons Learned Committee on lessons learned process
 - Quality and quantity → credibility
 - How attained:
 - Strong representation by technical divisions, SMA organization, Chief Engineer
 - Independence from programs/projects
 - Intensive working meetings (LCC meetings/follow-up is not inexpensive.)
 - Validation of lesson learned candidates, and verification of facts
 - Transition to "single author" model
 - Documentation: candidate list, LLC minutes, PFR-to-LL matrix, infusion matrix
 - Need 0.5–1.0 FTE to manage and support the lessons learned process
- Collection. Target-rich environment: need to prioritize candidates
- Writing. Lesson learned must be a "good read" as well as accurate
 - Presently, attaining this requires familiarity with HTML code

Examples

- Shaker Self-Check Unexpectedly Exceeded the Dynamic Test Limit: Shakers automatically perform a nominal self check, but Juno found that it exceeded the test level!
- Beware of Smocks With Metal Sleeve Fasteners: Metal snap fastener
 on the sleeve of a tester's lab coat (ESD smock) shorted a PCB
- Electrical Outage Revealed Emergency Systems Not Functioning: How do you know the exit signs will work during a power outage?
- Do Not Reuse Anti-Static Bags: A reused envelope contained conductive debris that shorted out flight hardware.
- Lessons Learned on the WISE Launch Campaign from the PLAR: This resulted from a request for the project to conduct a LL briefing.
- Dawn Ion Propulsion System Lessons Learned: Dawn inherited the 6
 year old IPS design from DS1: may need to re-qualify the contractor
 as well as re-qualifying the design

Lessons Learned "Infusion"

- Solution to non-use: achieve <u>closed-loop</u> lessons learned process by <u>infusing</u> lessons into engineering procedures and training
 - No longer dependent on project self-audits (or the initiative of individuals)
 - The JPL Chief Engineer proposed a 6-month exercise
- Attempted to infuse lessons into technical standards of the JPL groups
 - Problem: lesson <u>recommendations</u> not consistent with <u>requirements</u> docs
 - Problem: tracked group completion using Corrective Action Notices
 - Problem: excess complexity. Made little progress.
- Revised approach: infuse into specific paragraphs in the JPL Design Principles and Flight Project Practices
 - Requirements at appropriate level, where relevance to lessons is clear
 - Each project is audited for compliance, subject to waiver
 - Documents controlled by a single organization (OCE)
 - For credibility, cross-references vetted by JPL Engineering Board (JEB)

Engage Corrective Action System

- PRACA system provides a source of lessons learned
 - "Lesson Learned?" checkbox on Problem/Failure Report (PFR) form
 - PFRs reviewed by LLC Chair, then by LLC, with results documented
- Oh by the way, JPL lacks a Corrective Action Board (CAB)
 - No mechanism to resolve failures with JPL-wide implications
 - JPL generates ~200 PFRs per month
 - Establishment of formal JPL CAB not likely
- Lessons Learned Committee also serves as ad hoc CAB
 - The checkbox screens issues that may have impacts beyond the project
 - LLC evaluates checked PFRs as candidates for (1) lessons learned, (2)
 Corrective Action Notices (CANs), and/or (3) NASA Alerts
 - This leverages the technical scope of LLC representation
 - CAN recommendation is forwarded to the JPL office that issues CANs
- Future improvements to the CAB process?

Continuous Improvement

Office of the Chief Engineer

- *Kaizen* approach: systematically → small, incremental, improvements
- Update Evidence of Recurrence Control Effectiveness field in LLIS
 - Infusion provides objective evidence of closed-loop process
 - Some effort required to maintain infusion process
- Dissemination
 - Do we adequately communicate information on this resource JPL-wide?
 - 1996 Lessons Learned Information Day, 1996 & 1997 Common Threads Workshops, booth at 2000 Safety Day
 - Planning for a "Nieberding" workshop at JPL
- Pressure projects to perform lessons learned outbriefings
 - I've begun to contact PMs prior to major project milestones
- NASA is cross-referencing lessons learned with technical standards
- Are LLIS improvements needed? Are there useful process metrics?
- What else would improve the lessons learned process?